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LOW LEVEL RF AND FEEDBACK

R. GAROBY

CERN PS/RF

The fundamental feedback loops applied in RF systems of synchrotrons are described and

analysed using linear control systems theory. The classical control systems stabilizing the field in

RF cavities are presented, as well as the typical beam control loops providing beam stability. The

effects of high beam current (“beam loading”) are examined and cures are analyzed.

1 Introduction

RF systems suffer from imperfections and drift due to all kinds of sources such as

temperature, atmospheric pressure, mains ripple etc. Feedback loops are extensively

applied to counteract such degradation. The basic architecture of an RF system for a

synchrotron is given in Sec. 2.

The cavity control systems, which guarantee the short- to long-term stability of

RF performance are described and analyzed in Sec. 3. The typical beam control

loops stabilizing beam motion and providing reproducible beam characteristics are

the subject of Sec. 4.

Modern accelerators are often designed for beam currents larger than the

generator-induced current in a cavity, so that “beam loading” becomes a concern.

The stability issue in such a regime deserves the special analysis given in Sec. 5

where the various cures are also treated.

2 Generalities

The minimum RF installation is a simple amplifier chain where the accelerating

cavity is excited by the signal from an oscillator  (Figure 1).
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Figure 1:  Minimal RF system for a synchrotron
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The frequency has to be accurately controlled to centre the beam in the vacuum

chamber, and the signal amplitude must be adjusted for optimum beam evolution in

the longitudinal phase plane (capture at injection, matching before ejection, etc.).

With the exception of synchrotrons for leptons, where synchrotron radiation

provides a natural “cooling”, feedback loops are necessary to reach the accuracy and

stability required for reproducible beam performance. The block diagram of such a

typical RF installation is given in Figure 2.  Two types of feedback loops can be

distinguished:

– the hardware loops (cavity control systems analyzed in Sec. 3), which only

regulate hardware performance,

– the beam control loops (Sec. 4) that use beam signals to directly stabilize

beam performance.
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Figure 2:  Typical RF system for a synchrotron

The classical tools of linear control systems theory [1] are required to analyze

these systems.
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3. Cavity control systems

3.1  Amplitude, phase and tuning control systems

3.1.1 Amplitude and phase modulation

The simplest control systems do not control the RF field itself but its amplitude and

possibly its phase. A carrier sine-wave at ωc rad/s modulated in amplitude by a(t)

and in phase by p(t) is defined as [2]:

{ }x t X a t e j t tC( ) Re $ ( ( ))
( )= + +

1
ω ϕ

(1)

In the limit of small modulation depth, the following approximation is valid:

{ }x t X a t j t e j tC( ) Re $ ( ( ) ( ))= + +1 ϕ ω
(2)

System analysis requires the knowledge of the transmission of such modulations

through the amplifier and the cavity resonator. Four different transfer functions are

needed for a complete characterization [3]:

– Gaa(jω) for the transmission of amplitude into amplitude modulation,

– Gpp(jω) for the transmission of phase into phase modulation,

– Gap(jω) for the transmission of amplitude into phase modulation,

– Gpa(jω) for the transmission of phase into amplitude modulation.

When the modulated carrier passes through a linear and time-invariant device

with a transfer function H(s), the modulation transfer functions are given by [3]:
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Example: Application to a resonator.
The impedance of a parallel RLC circuit can be written as:

Z s
Rs

s s R

( ) =
+ +

2

2
2 2

σ
σ ω

(4)

where ωR is the resonant frequency (rad/s) of the circuit { }ω R LC= 1 , σ is the

damping rate (s
-1

) ( ){ }σ ω= R Q2 , and Q is the quality factor { }Q R C L= .
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When driven by a current generator of unity transconductance, Z(s) represents

the system transfer function. Using Eqs. 3 and 4, the transfer functions of the phase

and amplitude modulations affecting the input signal carrier (ωC ) are then:

( )
( )

( )

G G
s

s s

G G
s

s s

aa pp

Z

Z

pa ap
Z

Z

= =
+ +

+ + +

= − =
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σ ϕ σ
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2 1

tan
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(5)

where ϕZ is defined by: σ ϕ ω ωtan Z R C= − (6)

For a carrier centred at the resonance frequency (ωC  = ωR), the system behaves

like a first order low-pass filter for both types of modulation, with a 3 dB cut-off at σ
rad/s, and there is no coupling between modulations:

G G
s

G G

aa pp

pa ap

= =
+

= − =

σ
σ

0

(7)

Such a resonant circuit being a good approximation for an RF cavity, the

following sections will extensively use these results, either to illustrate the effects of

a detuned cavity (Sec. 3), or to justify the simplification of the system transfer

function in the analysis of beam controls (Sec. 4).

3.1.2 Field amplitude control

According to Eq. 5, the same transfer functions apply for amplitude and phase

modulation. Only the typical implementation of a field amplitude control system

(sketched in figure 3) will then be considered in detail.
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Figure 3:  Typical field amplitude and tuning regulation loops

The amplitude of the signal coupled to a probe on the cavity is peak detected and

compared to a Vprog command. The difference passes through the loop amplifier
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whose output controls the amplitude of the RF signal driving the amplifier chain

feeding the cavity. The functional block diagram in figure 4 describes the principle

and all the transfer functions involved in the amplitude control loop.

Figure 4:  Block diagram of the amplitude feedback loop

The RF cavity being generally the component with the smallest bandwidth, it is

justified to simplify the analysis and consider that Gaa(s) and Gap(s) correspond to the

cavity itself and are given by Eq. 5. GV(s) contains the characteristics of all the other

components and especially of the loop amplifier and its correctors. The electrical

delay will be neglected in the following analysis.

Four different cases will be systematically considered, corresponding to carrier

offsets of 0 (curves labeled a), σ (curves b), 2 σ (curves c) and 3 σ (curves d) (σ
being the half-3dB bandwidth of the resonator).

Open-loop transfer function without corrector. In the case where the amplifier chain

is wide-band and the loop amplifier has a constant gain, the open-loop transfer

function GOL_V(s)=GV(s)Gaa(s) is simply proportional to the cavity transfer function

for amplitude modulation. When the cavity is tuned at the carrier frequency, GOL_V(s)
is a first order low-pass filter, according to Eq. 7, and loop stability is unconditional

(curves a in figure 5). For increasing cavity detunings, GOL_V(s) becomes more

resonant, and stability more marginal (curves b, c and d in figure 5). A large loop

gain being required at low frequencies, its effect drastically limits the possible

performance of the amplitude feedback system.

Figure 5:  Open-loop Bode plot (left) and Nyquist diagram for positive frequencies (right) for an

amplitude loop without corrector (GV=1)
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Open-loop transfer function with corrector. To increase the loop gain at low

frequencies and preserve loop stability, a corrector is introduced with the transfer

function :

G s G
s

sV V
VL

( ) =
+



0

ω
(8)

The Bode plot and Nyquist diagram of GOL_V(s) in figure 6 show that the system

characteristics are now good enough for the closed loop performance to be

investigated.

Figure 6:  Open-loop Bode plot (left) and Nyquist diagram (right) for an amplitude loop with corrector

(GV0=0.05, ωVL=10σ)

Closed-loop transfer function with corrector. Closed-loop performance of the system

equipped with the corrector (Eq. 8) is illustrated by the graphs in figure 7. Amplitude

control is correctly achieved, although the response is visibly distorted at the largest

detunings. Phase modulation induced by the amplitude command is negligible at low

modulation frequency, but becomes noticeable for a detuned cavity in the vicinity of

the cut-off of the amplitude loop.

Figure 7:  Closed-loop Bode plots for  the amplitude feedback system (left) and for the transmission of

the amplitude command into phase modulation (right)
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3.1.3 Tuning control system

The typical block diagram for a tuning loop of a ferrite loaded cavity was shown in

figure 3. The cavity tune is deduced from the measurement of the phase angle

between cavity voltage and generator current (ϕΤ between cavity probe and grid 1 of

the final tube). This error signal drives the current generator which biases the ferrite

rings and subsequently controls the resonant frequency. The functional block

diagram is given in figure 8 with the relevant transfer functions.

Figure 8:  Block diagram of the tuning loop

The normalised tuning parameter x is defined by:

x R C=
−ω ω
σ

(9)

For a steady excitation of the cavity by the amplifier, any change dx converts into a

change in amplitude and phase of the field in the cavity. By definition Gxa and Gxp

are the transfer functions for dx into amplitude and phase modulation respectively. In

the case of the RLC circuit representing an RF cavity (Eq. 4) they are given by

(derivation in Appendix 1):

G
s s

G
s

s s
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Z

Z

xp
Z

=
−

+ + +

= +
+ + +

σ ϕ
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2

2 2 2

2
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2 1

tan

( tan )
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(10)

Cavity-tuning transfer functions without corrector. Gxa and Gxp are given in figure 9

for the same carrier offsets (or detunings) as for the amplitude loop. When the cavity

is tuned at the carrier frequency, Gxp shows a typical low-pass filter response, with a

cut-off frequency at σ rad/s and Gxa is null. When the cavity tune is not centred on

the carrier frequency, any tuning modulation converts into amplitude modulation

(curves b, c and d in figure 9 right). Gxp then changes even at low frequencies, with a

tendency to peak in gain at |ωC-ωR|.

For a real tuning system (figure 8), the open-loop transfer function is:

GOL_T(s)=GT(s)Gxp(s). A corrector is inserted in the loop amplifier (GT(s)) to provide

a large enough open-loop gain at low frequencies and a gain smaller than one above

σ, even in the presence of a certain detuning.

ϕT_prog + GT(s) Gxp(s)

Gxa(s)

ϕT

v

-

+
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Figure 9: Bode plot of the tuning to phase (left) and tuning to amplitude (right) transfer functions without

corrector (GT=1)

Open-loop tuning transfer functions with corrector. A rudimentary corrector in GT(s)
can again be of the type :

G s G
s

sT T
TL

( ) =
+



0

ω
(11)

The characteristics of the corresponding Bode plot and Nyquist diagram of GOL_T(s)
shown in figure 10 are now satisfactory.

Figure 10:  Open-loop Bode plot (left) and Nyquist diagram (right) for a tuning loop with corrector

(GT0=0.05,ωTL=10σ)

Closed-loop tuning transfer function with corrector. Closed-loop performance of the

tuning system equipped with the corrector (Eq. 11) demonstrates that it is

unconditionally stable as illustrated by the graphs in figure 11. However, only the

gain at very low frequencies is not affected by detuning. The response is low-pass,

with widely varying cut-off frequency and roll-off of gain.

There is no coupling of the tuning angle command to the field amplitude when

the cavity is tuned (curve a in figure 11-right), but it becomes increasingly larger

when detuning goes from σ to 3 σ (curves b,c and d in figure 11-right).
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Figure 11:  Closed-loop Bode plots for  the tuning feedback system (left) and for the transmission of the

tuning angle command into amplitude modulation (right)

3.2 Field regulation with I/Q feedback

3.2.1 I/Q modulation

A band-limited signal x(t) centred on a carrier at ωC rad/s can be expressed as the

sum of two amplitude-modulated orthogonal sine-waves at the carrier frequency:

x t x t t x t tI C Q C( ) ( ) cos ( ) sin= −ω ω (12)

where xI(t) and xQ(t) are respectiveley the “In-phase” and “Quadrature” baseband

envelopes.

Transmission through a linear time-invariant system. Contrary to amplitude/phase

modulation where transmission through a linear system can only be investigated for

small depth of modulation, no such limitation is needed for the analysis of I/Q

transfer functions.

The transmission of x(t) can be obtained from the convolution product with the

impulse response h(t) of the system:

y t h t x t( ) ( ) ( )= ∗ ⇔
∞

∞

∫   y(t) = h(

)x(t - )d

-

+

τ τ τ (13)

From Eqs. 12 and 13 we derive:

[ ]
[ ]

y t h t x t h t x t t

h t x t h t x t t

II I QI Q C

IQ I QQ Q C

( ) ( ) ( ) ( ) ( ) cos

( ) ( ) ( ) ( ) sin

= ∗ + ∗

− ∗ + ∗

ω

ω
(14)

using the following definition of the impulse responses hXY(t) and their associated

transfer functions:

( )( ) ( )( )[ ]
h t h t h t t

H j H j H j
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( )( ) ( )( )[ ]
h t h t h t t

H j
j

H j H j

IQ QI C

C C C

( ) ( ) ( ) sin

( )

= − = −

↔ = + − −

ω
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1

2

(16)

The flow-diagram in figure 12 conveniently illustrates these relations for the

transmission of I/Q modulation.

Input modulation

xI
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yI

yQ

+
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HS(jω)
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H
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HC
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+
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-

Figure 12:  Transfer functions for In-phase and Quadrature signals

Example: Application to a resonator.
The impulse response of an RLC resonator (impedance given by Eq. 4) is:

h t t tt
D

D
D( ) Re cos sin= −









−

2σ ω
σ

ω ωσ
(17)

with: ω ω σD R= −2 2
(18)

Using Eqs. 15 and 16, and with the definitions: Σω=ωD+ωC and ∆ω=ωD-ωC

we obtain:
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Taking the Laplace transform of these impulse responses after low-pass filtering

(elimination of the terms at Σω rad/s), we finally get the transfer functions HS and HC

characterising the resonator:
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In the case of a carrier centred at the frequency of the damped oscillation:

∆ω=ωD-ωC=0 rad/s (notice that ωD is given by Eq. 18 and slightly differs from ωR),

the transfer functions simplify to classical first-order low-pass filter responses:

( )

( )

H s
R

s

H s
R

s

S

C
D

( )

( )

=
+

=
+

σ
σ

σ
ω σ

2 (21)

3.2.2 I/Q feedback

Figure 13 shows the block diagram of an I/Q feedback control system. The vector

demodulator generates the I and Q components from the cavity probe signal with

respect to the reference oscillator. These are then compared to the command values

Iprog and Qprog. The differences are amplified and filtered in the Loop Corrector,

whose outputs control the Vector Modulator. The cavity amplifier chain is driven by

the modulator’s output.

+
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Figure 13:  I/Q feedback control system

The functional block diagram in figure 14 describes the transfer functions

involved in the analysis.

Figure 14:  Block diagram of the I/Q feedback loop

Ιprog + GIQ(s) HS(s)

-
+

+

Qprog + GIQ(s) HS(s)
+

+

HC(s)

HC(s)

+

+
+

Icav

Qcav

-

-



12

HC and HS represent the cavity, assuming as in the previous sections that it is the

element with the smallest bandwidth in the RF chain. The other elements are taken

care of in GIQ, and especially the loop corrector. The electrical delay is neglected.

Open-loop transfer function without corrector. By definition : GOL_IQ=GIQHS. In the

case where GIQ is frequency independent and of unit gain, the open-loop transfer

functions are given by Eq. 20, and their frequency responses are in figure 15. For a

carrier centred at ωD (curves a) the system is a first order low-pass filter, as visible in

Eq. 21. When detuning increases ( curves b, c and d) the gain at low frequencies

decreases and peaks at the offset ∆ω=ωD-ωC. A corrector is needed to have a large

enough gain in that frequency range.

Figure 15: Open-loop Bode plot (left) and Nyquist diagram for  the I (or Q) channel of an I/Q feedback

loop without corrector (R =1 Ω)

Open-loop tuning transfer functions with corrector. An integrator type of corrector,

similar to the ones used in the other control loops, is incorporated into GIQ :

G s G
s

sIQ IQ
IQL

( ) =
+






0

ω
(22)

Figure 16:  Open-loop Bode plot (left) and Nyquist diagram (right) for an I (or Q) loop with corrector

(R=1Ω , GIQ0=5, ωIQL=2σ)
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The corresponding Bode plot and Nyquist diagram of GOL_IQ(s) are now more

satisfactory, as can be seen in figure 16.  The loop gain stays large in the low

frequency range, while stability remains assured (figure 16 right).

Closed-loop I/Q feedback with corrector. Closed-loop performance when both the I

and Q paths are closed with the corrector defined in Eq. 22 is shown in figure 17.

Straight I (or Q) transmission (left graph) has a stable shape, almost unaffected by

detuning, while the contrary is true for cross-coupling (right graph).

Figure 17:  Closed-loop Bode plots for the I/Q feedback system: straight I (or Q) transmission (left) and

cross-coupling Iprog to Q (right)

3.3 Comparison of amplitude/phase and I/Q control systems

The amplitude/phase (Sec. 3.1.) and I/Q (Sec. 3.2.2) feedback control systems are

competing solutions for the stabilisation of the field in an RF cavity.

Table 1 : Comparison of amplitude/phase versus I/Q control systems

Amplitude/Phase I/Q
Control of field

amplitude/phase

Direct ( ! ) Indirect (by computation)

Dynamic range in field

amplitude

Limited for phase

loop

Unlimited

Phase control range < 360 deg Unlimited

Tolerance to drift of open-

loop phase-shift

Unlimited Small (performance degradation

by I/Q cross-coupling)

Operation over a large

frequency range

Easy for amplitude

Delicate for phase

Difficult

Implementation of DSP

techniques

Prone to sophistication

0 dB

-7 dB

-2 dB

σ/100 σ/10 σ 10σ

a

b

c

d

-20 dB

σ/100 σ/10 σ 10σ

-40 dB
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c
d

-60 dB-4 dB

-80 dB
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Because of its simplicity, amplitude/phase control has often been favored in the

past for synchrotrons, especially when phase stabilization was not mandatory and

beam manipulations were rudimentary. Implementation of I/Q control puts a

stringent requirement on the phase-shift across the complete loop which complicates

hardware. When that condition is met, it provides a number of advantages and

interesting possibilities of sophistication using modern digital signal processing

techniques. A few important points of comparison are listed in Table 1.

4 Beam control loops

4.1 Beam transfer function for dipolar motion

Beam phase oscillation. By definition the stable particle is the particle that stays at

the same phase ϕB (called the stable phase) with respect to the RF sine-wave in the

cavity from one turn to the next. A real particle is characterised by its coordinates

(∆ϕΒ, ∆p) in phase and momentum with respect to that stable particle. The frequency

of the RF is subject to changes δωRF. The basic set-up considered is represented in

figure 18.

Figure 18 : Set-up for the definition of the beam transfer function for dipolar motion

The differential equations of motion for the particle in the longitudinal phase

plane are then :

d p

dt
a

d

dt
b p

B B

B
RF

∆
∆

∆
∆

= ⋅

= +









cosϕ ϕ
ϕ

δω
(23)

using :

a
qV

R
=

2π
(24)

b
h c

Rp T

=






 −










β
γ γ
1 1

2 2
(25)

where R is the mean radius of the synchrotron, V the peak RF voltage, h the RF

harmonic number (number of RF periods per revolution), q the particle charge, p the

δωRF OSCILLATOR CAVITY

PU

ϕΒ Beam
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beam momentum, (β, γ) the standard relativistic parameters of the beam, and γT the γ
at transition energy. Applying the Laplace transform to Eq. 23 we can derive the

beam transfer function for dipolar motion :

B s
s

s
B

RF S

( ) = =
+

∆ϕ
δω ω2 2 (26)

It represents an undamped resonator centred at the synchrotron frequency ωS:

ω ϕS Bab= − cos (27)

Beam radial position. The size of the vacuum chamber being very limited in a

synchrotron, the mean radial position ∆R of the beam is an important parameter. It is

measured with respect to the central orbit which corresponds to a reference rate of

energy gain. This rate defines a reference phase difference ∆ϕB_ref, and any deviation

of ∆ϕB from that value causes an energy change at the rate:

d E

dt
qf VREV B B B ref

∆
∆ ∆= ⋅ −cos ( )

_
ϕ ϕ ϕ (28)

where fREV is the beam revolution frequency. Taking the Laplace transform of Eq. 28

and converting ∆E into radial position we get:

∆ ∆ ∆R

R

k

s
R

B B ref= ⋅ −( )_ϕ ϕ (29)

with: k
R

h cR S
T

=
−







ω

β
γ

γ γ
2

2

2 2
(30)

4.2 Beam phase loop

A damping mechanism is needed to avoid uncontrolled beam phase oscillations and

provide reproducible beam characteristics. Various methods are possible [4], all

being based on feedback systems called “beam controls” which manipulate the RF

according to some measured beam parameter. We will examine the typical problems

associated with beam controls, considering the arrangement shown in figure 19,

which is widely  used in hadron synchrotrons [5, 6]. Feedback is achieved passing

the beam phase information through a loop amplifier (transfer function GPL) to

modify the frequency of the RF oscillator.

Figure 19:  Block diagram of the beam phase loop

∆ϕB_pro + GPL(s) B(s) ∆ϕΒ
-

+ δωR

∆R/Rk sR+
-

+

∆ϕB_re
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The following analysis is aimed at describing the basic principles of beam

controls and important simplifications are deliberately implied which must be

reconsidered for any real design:

• the complete RF amplifier chain, and consequently the cavity itself, has a unit

transfer function for phase modulation. According to Eq. 5, this is only justified

for tuned resonators with large bandwidth compared to the frequency range

covered by the beam phase loop. This is a reasonable assumption in the case of

hadron accelerators which use ferrite-loaded cavities. A first order low-pass

filter with a cut-off at the half 3dB bandwidth (Eq. 7) can easily be introduced in

GPL if a better approximation is required.

• the electrical delay is not taken into account. This is often not justified, because

the beam phase has to be fast and the phase-lag due to the delay is usually the

limiting factor.

4.2.1 DC-coupled beam phase loop

Open-loop transfer function. A frequency independent gain (GPL(s)= GPL0) already

provides damping of phase oscillations. Feedback stability is not a problem, as

demonstrated by the plots of the open-loop gain GOL_PL in figure 20 (a finite Q has

been used to generate these pictures for practical illustration purpose). Aperiodic

closed-loop response is obtained for GPL0>2ωS.

Figure 20:  Open-loop Bode plot (left) and Nyquist diagram (right) for a DC coupled beam phase loop

(GPL0=10ωS)

Closed-loop transfer function.  Operation in closed-loop gives an acceptable band-

pass transfer function for the ∆ϕB_prog command (figure 21), and the natural resonant

characteristic (Eq. 26 and figure 20) disappears completely. But the transmission to

the radial position has a very large gain at low frequencies down to DC, as visible in

figure 21 (right where the vertical scale is arbitrary because it is machine and beam

energy dependent). An adequate control of the beam radial position requires a

practically unachievable accuracy on the DC value of ∆ϕB_prog.
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Figure 21:  Closed-loop Bode plots for the DC coupled beam phase loop: transmission of the ∆ϕB_prog

command onto ∆ϕB (left) and onto ∆R/R  (right)

4.2.2 AC-coupled beam phase loop

Using AC coupling in the phase loop (high-pass filter in the loop amplifier), the DC

component of the phase error is suppressed and the DC value of ∆ϕB_prog no longer

needs to be very accurate. But then the beam radial position is defined by the

programmed frequency of the RF oscillator. Fortunately modern frequency synthesis

technology [3] gives highly accurate frequency control.

Open-loop transfer function. GPL(s) is chosen with a high-pass response given by:

G s G
s

sPL PL
PH

( ) =
+







0 ω

(31)

where ωPH must be low enough to provide acceptable gain and phase stability

margins at low frequency. Typical Bode plot and Nyquist diagram of GOL_PL(s) are

shown in figure 22.

Figure 22:  Open-loop Bode plot (left) and Nyquist diagram (right) for an AC coupled beam phase loop

(GPL0=10ωS, ωPH= ωS/10)
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Closed-loop transfer functions of an AC-coupled phase loop.  The closed-loop

transfer function is again of band-pass type and non-resonant (figure 23 left). The

transmission to the radial position now has no gain at DC, and peaks below ωS

(figure 23 right). The accuracy of ∆ϕB_prog at DC is no longer relevant anymore, but

AC variations still need to be considered.

Figure 23:  Closed-loop Bode plots for the AC-coupled beam phase loop: transmission of the ∆ϕB_prog

command onto ∆ϕB (left) and onto ∆R/R  (right)

4.3 Radial loop

Sensors can be used to define the beam radial position instead of an accurate

frequency control. The principle is to feed back the position error signal into the

beam phase loop (figure 24) in such a way that DC and low frequency control of the

radial position is achieved by the radial loop.

Figure 24:  Block diagram of a radial loop associated with a beam phase loop

Open-loop transfer function without corrector. The first step in the investigation is

to consider the case where GR(s) is a constant (GR = GR0). Typical Bode and Nyquist

plots are drawn in figure 25. Stability is unconditional, but the gain at low frequency

is necessarily limited to cross 0 dB below ωS. An integrator type of corrector is

clearly needed.

+

GPL(s)

B(s)

∆ϕΒ
-

+ δωR

0 dB

∆R/R

-30 dB

k sR

-10 dB

+
-+

10 dB

per

division-20 dB

ωSωS/100 100 ωS ωS/100 ωS 100 ωS

∆R/Rprog

GR(s)

-50 dB



19

Figure 25:  Open-loop Bode plot (left) and Nyquist diagram (right) for a radial loop associated to an AC-

coupled beam phase loop (GPL0=10ωS, ωPH= ωS/10)

Open-loop transfer function with corrector. The following corrector is used to

increase the gain at low frequency :

G s G
s

sR R
RL

( ) =
+



0

ω
(32)

The resulting graphs are shown in figure 26. ωRL has to be smaller than ωS to

introduce little phase lag where GOL_R approaches 0 dB (here ωRL=ωS/10). Stability is

then guaranteed and closed-loop operation is possible.

Figure 26:  Open-loop Bode plot (left) and Nyquist diagram (right) for a radial loop with corrector

associated to an AC-coupled beam phase loop (GPL0=10ωS, ωPH= ωRL = ωS/10)

Close D-loop transfer function with corrector. Control of the radial position is

properly achieved from DC to 0.3 ωS (figure 27). Compared to the DC case (figure

21) or to the AC case without radial loop (figure 23), the operation of the beam

phase loop is only slightly affected (figure 28) in the lower part of the frequency

range, where the radial loop takes control.
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Figure 27:  Closed-loop Bode plot for a radial loop with corrector associated with an AC-coupled beam

phase loop: transmission of the ∆R/Rprog  command onto ∆R/R.

Figure 28:  Closed-loop Bode plots for the AC-coupled beam phase loop in the presence of the radial

loop: transmission of the ∆ϕB_prog command onto ∆ϕB (left) and onto ∆R/R  (right)

4.4 Synchronisation loop

The need frequently arises to synchronize the beam circulating in the synchrotron

with an external RF reference, for instance for a “bunch-into-bucket” transfer into

another machine.

Beam phase with respect to an external reference. The frequency of the external

reference corresponds to a precise radial position. In Sec. 4.1 we have derived the

relation between the beam radial position ∆R/R and ∆ϕB. A relative frequency

difference ∆ω/ω results from ∆R/R, according to:

∆ ∆ω
ω

γ γ
γ

=
−






T R

R

2 2

2
(33)

Using Eqs. 29 and 30, we can deduce:
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∆ ∆ω
ω

π ϕ=






S

Bs

2

2

1
(34)

The frequency difference ∆ω is the time-derivative of the phase ϕSYN of the

beam with respect to the external reference. Consequently:

∆ω ϕ= ⋅s SYN (35)

Combining Eqs. 34 and 35 we finally get the transfer function:

ϕ
ϕ
SYN

B
Sk

s∆
= 1

2
(36)

with: kS
S=

ω
π

2

2
(37)

The block diagram of a beam control equipped with a synchronisation loop

is drawn in figure 29. Note that a beam phase loop is kept to provide damping of

phase oscillations, while no radial loop can be maintained because the external

frequency reference imposes a radial position.

Figure 29:  Block diagram of a synchronisation loop associated with a beam phase loop

Open-loop transfer function without corrector. The plots corresponding to a

constant gain in GS(s) are presented in figure 30. The point (-1,0) is encircled by the

gain curve in the Nyquist plot, so that the system is clearly unstable in closed loop.

This is a direct consequence of the double integration from ∆ϕB to ϕSYN.

Figure 30:  Open-loop Bode plot (left) and Nyquist diagram (right) for a synchronisation loop without

corrector associated with an AC-coupled beam phase loop (GPL0=10ωS, ωPH= ωS/10, GS0=10*ωS)

+

GPL(s)

B(s)

∆ϕΒ
-

+ δωR ϕSY

0 dB

k sS
2

-80 dB

+

Im(GOL_R)

-

Re(GOL_R)

0

+

+2

-2

-2 0 +2

-1

ωSωS/100 100 ωS

ω S + → ∞

-4

ϕSYN_pro

g

GS(s)

40 dB

-40 dB



22

Open-loop transfer functions with a corrector. Phase advance is obtained in the

frequency range [ωSL, ωSH] where the open-loop gain crosses 0 dB (ωSL < ωSH) from

a phase-lead network:

G s G
s

sS S
SL

SH

( ) =
+
+









0

ω
ω (38)

The plots in figure 31 show that stability is now achieved.

Figure 31:  Open-loop Bode plot (left) and Nyquist diagram (right) for a synchronisation loop with

corrector associated to an AC-coupled beam phase loop (GPL0=10ωS, ωPH= ωS/10, GS0=100ωS,

ωSL= ωS/10, ωSH=10ωS)

Closed-loop transfer function. As shown in figure 32, the synchronisation loop gives

control of ϕSYN to excitation from the ϕSYN_prog input. The response is low-pass, with a

cut-off frequency at ~ 0.3 ωS.

Figure 32:  Closed-loop Bode plot for a synchronisation loop with corrector associated to an AC-coupled

beam phase loop: transmission of the ϕSYN_prog  command onto ϕSYN.

Operation of the beam phase loop is affected at low frequencies (figure 33 left to

be compared to figures 21 and 23), but the response remains flat over the bandwidth.

The effect of the phase loop command input ∆ϕB_prog on the synchronisation phase
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ϕSYN is negligible at very low frequencies (below ~ ωS/100), so that the static value of

ϕSYN is fully under the control of the ϕSYN_prog input of the synchronisation loop. But

for larger frequencies, especially slightly below and above the cut-off of the

synchronisation loop, ∆ϕB_prog is transmitted with a large gain to ϕSYN, so that care

must be taken to limit noise on ∆ϕB_prog in that frequency range.

Figure 33:  Closed-loop Bode plots for the AC-coupled beam phase loop in the presence of the

synchronisation loop: transmission of the ∆ϕB_prog command onto ∆ϕB (left) and onto ϕSYN  (right)

5 High beam-intensity regime (Beam-loading effects and cures)

5.1 Conventions

Beam circulating in a synchrotron causes an image current IB to flow on the

vacuum chamber and through every obstacle along its path. RF cavities are

especially important sources of impedance where this image current adds to the

amplifier current IG to develop voltage. Figure 34 shows the equivalent circuit and

conventions used for the analysis [7].
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Figure 34:  Equivalent circuit for a cavity
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As a first approximation we will only consider the RF components of these beam

currents. This is justified by the fact that the cavity impedance is, by construction,

much larger at that frequency. Basic circuit equations and the vector diagram of the

currents flowing in the cavity are represented in figure 35.

( )[ ]
r r r

r
I I I

I V Z V R j C L

I V R

T G B

T cav

= +

= = + −

=

1 1

0

ω ω( )

Figure 35: Basic equations and vector diagram (below transition) of the RF currents in a cavity

The amplitude of the beam RF current IB depends upon the bunch spectrum,

which itself results from the bunch length. In the limit of very short bunches, the RF

component IB is twice the DC beam current: IB = 2 IB_DC . The stable phase ϕB is

defined as the phase providing the rate of energy-gain of the stable particle (Sec.

4.1). Beam loading is quantified using the dimensionless beam loading parameter Y
defined by:

Y I IB=
0

(39)

5.2 Beam loading effects

5.2.1 Tools for analysis

In the presence of beam loading, the voltage in a cavity is also influenced by the

beam (figure 35). Consequently the cavity transfer functions for phase and amplitude

modulations are modified, compared to the case studied in Sec.3.1, and new transfer

functions relating the modulations induced on V by the phase modulation of IB have

to be considered. Derivation of these transfer functions is given in Appendix 2. The

analysis of a typical RF system now involves the study of a flow-graph [7] as in

figure 36, where there is a field amplitude (Sec.3.1.2) and a tuning (Sec. 3.1.3)

control loop around the cavity, plus a beam phase loop (Sec. 4.2).

Phase and amplitude modulations are defined in Eq. 1, and they are labelled

respectively (aG, pG) for the RF amplifier (“generator”) and (aV, pV) for the cavity

voltage. Only phase modulation pB is considered for the beam. x is the tuning

parameter defined in Eq. 9. The loop amplifiers and correction networks are

included in Ca, Ct and Cp, respectively for the amplitude, tuning and beam phase

loop.

ϕZ

ϕL
ϕB r

V
r
I0

r
IG

r
IT

r
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The dashed lines in figure 36 correspond to coupling between loops. Couplings

introduced by 
G
Gpa,

G
Gap and Gxa have already been envisaged in Sec.3 in the case of

a negligible beam current (Y<<1) and for one loop at a time.

Figure 36: Flow graph of a complete RF system

The beam transfer function B derived in Sec. 4. (Eq. 26) corresponds to the

transmission from δωRF (=-s.pV) to (pB-pV).  The beam transfer function B’ used in

figure 36 is slightly different because it relates pB to pV. Namely :

B
B

s
= −1 '

(40)

From Eqs. 26 and 40 we can obtain:

B
s

S

S

' =
+

ω
ω

2

2 2
(41)

5.2.2 Robinson instability

Derivation. The simplest case is where there are no feedback loops (Ca=Ct=Cp=0). It

corresponds to the canonical RF system represented in figure 1 (Sec. 2). The only

remaining loops in the flow-graph of figure 36 are due to the effect of beam phase

oscillations on the amplitude and phase of the cavity. Mason’s rule applied to this

system gives the following characteristic equation:

1 0− ′⋅ − ′⋅ =B G B GB
pp

B
pa Btanϕ (42)

Replacing B’, BGpp and 
BGpa by their expressions (Eq. 41 and Appendix 2) we

finally get a fourth-degree polynomial equation:
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Looking for stability conditions, the Routh criteria gives the following

inequalities in the case of an energy below transition (cosϕB > 0) :

0 2 2< <Y Z Bsin cosϕ ϕ (44)

These are called Robinson’s instability limits [8]. Two different ranges of parameters

are forbidden. The case ϕB = 0 deg is graphically illustrated in the co-ordinate system

(ϕZ, Y) in figure 37.

Discussion. Instability in the left half of the plane is due to the cavity impedance,

independently of the relative beam loading parameter Y. It corresponds to anti-

damped in-phase dipolar oscillations of all bunches, and can also be derived from

Sacherer’s theory of instabilities [9].

The concave curve in the right half-plane is due to an RF power limitation and

depends on Y. This corresponds to an aperiodic instability where the beam goes out

of control without oscillation.

Figure 37: Robinson’s instability diagram

Stability can always be attained for any value of Y, if the detuning of the

resonator is made large enough. This is not as unreasonable as it may seem at first

sight, once one notices that the curve corresponding to the best operating condition

for the power amplifier (namely : ϕL = 0 deg) is always in the stable region and

asymptotically approaches the concave limit when ϕZ tends towards 90 deg.

5.2.3 Multi-loop instability

The Robinson’s instabilities represent a limit case, which is rarely encountered in

real installations. The various loops described in Secs. 3 and 4 are generally present

and must be taken into account. The full complexity of the flow graph in figure 36

has to be handled to derive the characteristic equation and analyse stability.

Analytical solutions only exist for simplified limit cases.

ϕΖ  (deg)

-30 30 60 90-60

1

3

5

ϕL=0 deg

Y



27

Many examples have been treated in the literature, illustrating specific situations

[4, 7]. A recurrent empirical observation that can be made is that the stability domain

for systems containing a beam phase loop is often limited by a concave curve that

extends over both side of the Y axis, with a minimum in the vicinity of Y = 2.

Similar cut-off frequencies must be avoided in the various loops, especially if

they are near to the half-cavity bandwidth σ, because of the strong couplings it

creates even at small values of Y.

Assuming that all loop amplifiers are simple integrators (Ca = ωa/s, etc...), and in

the extreme case ϕB = 0 deg (stationary bucket), ϕL = 0 deg (amplifier driving a

resistive load), σ large (wide band cavity), and B’(s) = 0 (rigid beam), F. Pedersen

[7] has derived the following analytical criteria:

Y a

T

T

a

p

T

T

p

a

p

p

a

< + + + + + +2
ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

(45)

5.3 Beam loading cures

5.3.1 Passive damping

The simplest method to reduce the relative beam loading Y = IB/I0 is to increase the

resistive current I0 in the cavity, but this solution is clearly inefficient due to the

larger RF power required. However it is an easy means to obtain a moderate

improvement factor in a small machine.

It has been implemented using a low output impedance RF amplifier, or even

using a dummy load coupled to the cavity.

5.3.2 Feedforward

The principle of feedforward [10, 11, 12] is to use the RF amplifier itself to inject a

current −
r
I B in the cavity. The equivalent impedance seen by the beam is then zero.

This technique is illustrated in figure 38, where the input of the RF amplifier is

driven by:
r r r
I I IG G B= −' (46)

I0

V

IG

IB

IT

L R C
1Σ

-IB

from low level RF

(control of IG)

Figure 38: Layout of a feedforward beam-loading compensation
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The low level RF system (beam control) controls 
r
IT  instead of 

r
IG  in the initial

case. Cross-coupling between loops is largely reduced and system stability is largely

improved. Some coupling remains due to the effect of 
r
I B onto the tuning angle ϕL

which the tuning loop regulates.

This method is inexpensive to implement, since it requires only slight

modification to the low level RF hardware. But it is delicate to adjust and maintain,

because it is an open-loop set-up and performance degrades with the drift of any

element of the RF amplification chain.

5.3.3 Wideband feedback

The principle of wideband feedback [11-15] is to put the cavity inside a closed loop

with a large loop gain (figure 39). That loop works directly at the RF and includes a

high-gain and high-power amplification chain. The effect is a reduction of the

apparent cavity impedance according to:

Z j
Z j

G jeq
cav

OL

( )
( )

( )
ω

ω
ω=

+1
(47)

where Zcav(jω) is the cavity impedance (Eq. 4), GOL(jω) is the open loop gain and

Zeq(jω) is the apparent impedance once the loop is closed. Assuming that the

resonance frequency is the same in open and closed loop, the impedance at

resonance is resistive and scaled by the factor 1/(1+A.g.R.Att). For a given beam

intensity, the relative beam-loading parameter Y is then multiplied by the same

factor. But efficiency stays similar to an open-loop system, contrarily to the case of

passive damping (Sec. 5.3.1) where RF power is wasted.

I0

V
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IT

L R C

Att.
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+
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(control of V)

g

Figure 39: Layout of wideband feedback

System performance is limited by the electrical delay τ in the loop. It can be

demonstrated [11, 12] that the minimum impedance at resonance is linked to the R/Q

of the cavity and to τ  by:

R
R

Qeq
R

_min
=

2ω
π

τ (48)
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With this technique the low level RF system has direct control of 
r

V , which is

the physical parameter really acting on the beam. It also has the advantage of being

tolerant to drift in the characteristics of the elements by virtue of the feedback. A

spurious effect is that the coupled-bunch instability thresholds are degraded because

the real part of Zeq is increased outside the loop bandwidth, and because the

resonance frequency in closed loop can easily be offset from its open-loop value.

5.3.4 Long delay feedback

When reduction of the cavity impedance is required over a bandwidth of many

revolution frequency harmonics, the wideband feedback scheme is limited by the

electrical delay τ in the RF chain (effect leading to Eq. 48). But the beam spectrum is

only made of narrow bands (a few synchrotron frequencies) around revolution

harmonics, so that impedance reduction needs in fact to be effective over small

bandwidths. A large delay can then be used in the RF chain, provided the loop has

the proper phase for stability around every revolution harmonic. A delay of one

machine turn clearly meets that criteria, and can be associated with a comb filter to

make a “One-turn-delay feedback” system [11, 12, 16, 17] (figure 40).
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Figure 40 : Layout of ‘’One-turn-delay’’ feedback

Implementation details. Care should be taken not to interfere with the operation of

the other loops which all work in the vicinity of the RF frequency. This generally

implies that the comb passband centred on the RF must be absent [16, 17].

An elegant solution for the comb filter is to use a digital recursive filter [16, 17]

which has a transfer function given by :

H j
G

Ke j TREV
( )ω ω=

− −
0

1
(49)

with K<1, using the one-turn delay D j e j TREV( )ω ω= −
. The open loop gain is then :

G j
G A g Z j

e KOL
cav

i TREV
( )

( )
ω

ω
ω=

⋅ ⋅ ⋅
−

0
(50)
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More sophisticated operation is possible using digital signal processing. It has

been applied to Linac RF systems, where the delay is the RF pulse repetition period,

and is called ‘’Adaptive feedforward’’ [18, 19].

5.3.5 Comparison of cures

Table 2 summarises and compares the characteristics of the various cures described

in the previous sections.

Table 2 : Comparison of cures against beam loading

Performance
concerning :

Passive
damping

Feedforward* Fast
feedback

Long delay
feedback

Beam loading at

RF

Marginal

improvement

Good Excellent Non relevant

Transient beam

loading

Small effect Can be good

(difficult to adjust)

Small effect Excellent

Spurious effects

for the beam

None Can be favorable

against instabilities

(difficult to adjust)

Degrades

instabilities

threshold

Improves

instabilities

threshold

Complexity Small Small / Medium High Medium

Adjustment Easy Lengthy (with

beam)

Easy (on

bench)

Easy (on

bench)

Drift of

characteristics

No Yes No No

Range (in β and

h)

Unlimited Limited for good

performance

Unlimited Unlimited

Cost High Small Medium Small

Ease of operation Easy Complex Easy Easy

* Remark : comments on the feedforward method assume that the beam signal is fed

at the low power end of the amplification chain which implies a long delay. Better

ratings apply when the electrical delay is small [20].

Appendix 1 : Transfer functions for tuning

Cavity impedance

The cavity being approximated by an RLC parallel circuit, its impedance Z is given

by Eq. 4:

Z s
Rs

s s R

( ) =
+ +

2

2
2 2

σ
σ ω
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where ωR (rad/s) is the resonant frequency, Q is the quality factor ( Q R C L= / ),

and σ is the damping rate (σ =ωR/(2Q) is also the half 3 dB bandwidth).

For ωC in the vicinity of ωR :

Z j
j R

j

R

jC
C

R C C Z

( )
tan

ω
σ ω

ω ω σω ϕ
=

− +
≈

−
2

2 12 2
(51)

using the definition : tanϕ
ω ω

σZ
R C=

−
(52)

Effects of a variation dx of the tuning parameter

The normalised tuning parameter x is defined by Eq. 9, and using Eq. 52 we get: x =

tanϕZ so that : dx = d(tanϕZ) .

At constant excitation current and for a change dx, the amplitude V and phase ϕ of

the cavity voltage are modulated by :

dV

V

d Z

Z Z

d Z

dx
dx

d
dArg Z

dx
dx

= =

=

1

ϕ ( )
(53)

Using the expression given for Z as a function tanϕZ, the derivatives with respect to x
are :

( )
1

1
2Z

d Z

dx
Z

Z

=
−

+

tan

tan

ϕ

ϕ
(54)

d Arg Z

dx

d

dx
Z

Z

( ( ))

( tan )
= =

+
ϕ

ϕ
1

1
2

(55)

Transmission of the effects of dx

The amplitude and phase modulations generated by dx are fed into the resonator.

They are transmitted with the transfer functions GS and GC characterising the cavity

(Eq. 5 in Sec. 3.1.1). Consequently :

G
a

dx Z

d Z

dx
G

dArg Z

dx
G

G
p

dx

dArg Z

dx
G

Z

d Z

dx
G

xa S C

xp S C

= = +

= = −

1

1

( )

( )
(56)

Substituting into these formulas the expressions obtained earlier for the derivatives

with respect to x, we finally obtain :
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G
s s

G
s

s s

xa
Z

Z

xp
Z

=
−

+ + +

= +
+ + +

σ ϕ
σ σ ϕ

σ σ
σ σ ϕ

2

2 2 2

2

2 2 2

2 1

2 1

tan

( tan )

( tan )

(57)

Appendix 2 : Transfer functions in the presence of beam loading

The transmission of the modulations of IG onto V is deduced in two steps. In the first

step, the transmission onto the total current IT is derived. In the second, the

modulations of V resulting from the ones of IT are obtained.

Transmission of modulations of IG onto IT

From Eq. 2 we can write :

[ ]{ }I t I e a t j p tG G
j t

G G
C( ) Re ( ) ( )= + + ⋅ω

1 (58)

It is equivalent to saying that the vector
r
IG  is modulated in amplitude by a parallel

vector of length ∆I a IG G G/ / = . Similarly, the vector 
r
IG  is modulated in phase by a

perpendicular vector of length ∆I p IG G G⊥ = . This is illustrated in the vector

diagram in figure 43.

The modulations of IT can be deduced geometrically from the ones of IG:

∆ ∆ ∆
∆ ∆ ∆

I I I
I I I

T G GT G GT

T G GT G GT

/ / / /

/ /

cos sin

sin cos

= −
= +

⊥

⊥ ⊥

ϕ ϕ
ϕ ϕ (59)

Figure 43: Vector diagram for the transmission of modulations of IG
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Consequently:

( )
( )

a
I

I

I

I
a p

p
I

I

I

I
a p

T
T

T

G

T
G GT G GT

T
T

T

G

T
G GT G GT

= = −

= = +⊥

∆

∆

/ /
cos sin

sin cos

ϕ ϕ

ϕ ϕ
(60)

Transmission of modulations of IT  onto V

By definition of the modulation transfer functions (Sec. 3):

a a G p G
p p G a G

V T aa T ap

V T pp T pa

= +
= + (61)

Using the previous expressions for aT and pT as a function of aG and pG we can

write:

[ ] [ ]
[ ] [ ]

a a
I

I
G G p

I

I
G G

p p
I

I
G G a

I

I
G G

V G
G

T
aa GT ap GT G

G

T
ap GT aa GT

V G
G

T
pp GT pa GT G

G

T
pp GT pa GT

= + + −

= − + +

cos sin cos sin

cos sin sin cos

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
(62)

The transfer functions for IG to V in the presence of beam loading are then:

[ ]
[ ]

G
aa

G
pp

G

T
aa GT ap GT

G
pa

G
ap

G

T
pa GT aa GT

G G
I

I
G G

G G
I

I
G G

= = +

=− = +

cos sin

cos sin

ϕ ϕ

ϕ ϕ
(63)

Replacing these transfer functions with their expression for a cavity (Eq. 5) and

using geometric considerations we finally get:

( )[ ] ( )

( ) ( )
G

aa
G

pp

Z B Z B B

Z

G
pa

G
ap

B Z B Z B

Z

G G
Y Y s

s s

G G
Y Y s

s s

= =
+ + − + +

+ + +

=− =
− + + −

+ + +

σ ϕ ϕ ϕ ϕ σ ϕ
σ σ ϕ

σ ϕ ϕ ϕ σ ϕ ϕ
σ σ ϕ

2 2

2 2 2

2

2 2 2

1 1

2 1

2 1

tan sin tan cos sin

( tan )

cos tan sin tan cos

( tan )

(64)

Transmission of modulations of IB  onto V

In a similar way, the following relations can be established for the transmission of

the modulations of IB onto V:
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[ ]

( )[ ]
B
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B

pp

Z B B B

Z

B
pa

B
ap

B Z B B

Z

G G
Y s

s s

G G
Y s

s s

= =
− −

+ + +

=− =
+ +

+ + +

σ ϕ ϕ ϕ σ ϕ
σ σ ϕ

σ ϕ ϕ ϕ σ ϕ

σ σ ϕ

2

2 2 2

2

2 2 2

2 1

2 1

(tan cos sin ) sin
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(65)
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